Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 716
Filtrar
1.
Toxicol Lett ; 382: 13-21, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37164126

RESUMO

In long term rodent studies administering Cyclobutrifluram (TYMIRIUM® Technology), a new agrochemical, there was a slight elevation of incidence of hepatocellular carcinomas in male CD-1 mice that was within the historical control range but appeared to be dose responsive. Cyclobutrifluram's ability to activate mouse constitutive androstane receptor (CAR) mediated gene transcription was confirmed in vitro, therefore a 28-day dietary toxicity study was conducted in vivo in male CD-1 mice to assess the CAR activation mode of action hypothesis of Cyclobutrifluram along with phenobarbital, a known CAR activator. In addition to other end points comprehensive (polar and lipidomic) hybrid metabolomics analyses were performed on terminal plasma and liver samples following 2-, 7- and 28-days dietary exposure to cyclobutrifluram and phenobarbital. The data generation and quality assessments were performed in line with the principles of the MEtabolomics standaRds Initiative in Toxicology (MERIT).First the full annotated feature set was used to compare the metabolomic changes induced by the administration of the two test substances using Shared and Unique Structures plots. This gave a comprehensive overview of the similarity of the two effect profiles showing good correlation and demonstrated that no other, alternative effect signatures were detected. Then the phenobarbital induced differentially abundant metabolites were selected, compared to the literature and their direction of change was assessed in cyclobutrifluram profiles, finding good agreement. Both approaches concluded that the metabolomics data supports the CAR activation hypothesis. Comparison of the metabolomic effect profiles can be a line of evidence in mode of action hypothesis testing in the chemical risk assessment process.


Assuntos
Segurança Química , Neoplasias Hepáticas , Masculino , Camundongos , Animais , Fígado/metabolismo , Hepatócitos , Receptores Citoplasmáticos e Nucleares/metabolismo , Fenobarbital/toxicidade , Fenobarbital/metabolismo , Neoplasias Hepáticas/patologia , Metabolômica
2.
Arch Toxicol ; 96(10): 2739-2754, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35881160

RESUMO

Activation of the constitutive androstane receptor (CAR) may induce adaptive but also adverse effects in rodent liver, including the induction of drug-metabolizing enzymes, transient hepatocellular proliferation, and promotion of liver tumor growth. Human relevance of CAR-related adverse hepatic effects is controversially debated. Here, we used the chimeric FRG-KO mouse model with livers largely repopulated by human hepatocytes, in order to study human hepatocytes and their response to treatment with the model CAR activator phenobarbital (PB) in vivo. Mice received an intraperitoneal injection with 50 mg/kg body weight PB or saline, and were sacrificed after 72-144 h. Non-repopulated FRG-KO mice were used as additional control. Comprehensive proteomics datasets were generated by merging data obtained by targeted as well as non-targeted proteomics approaches. For the first time, a novel proteomics workflow was established to comparatively analyze the effects of PB on human and murine proteins within one sample. Analysis of merged proteome data sets and bioinformatics data mining revealed comparable responses in murine and human hepatocytes with respect to nuclear receptor activation and induction of xenobiotic metabolism. By contrast, activation of MYC, a key regulator of proliferation, was predicted only for mouse but not human hepatocytes. Analyses of 5-bromo-2'-deoxyuridine incorporation confirmed this finding. In summary, this study for the first time presents a comprehensive proteomic analysis of CAR-dependent effects in human and mouse hepatocytes from humanized FRG-KO mice. The data support the hypothesis that PB does induce adaptive metabolic responses, but not hepatocellular proliferation in human hepatocytes in vivo.


Assuntos
Fenobarbital , Proteômica , Animais , Receptor Constitutivo de Androstano , Hepatócitos , Humanos , Fígado , Camundongos , Camundongos Endogâmicos , Fenobarbital/toxicidade
3.
Neurobiol Dis ; 171: 105814, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35817217

RESUMO

Barbiturates and benzodiazepines are GABAA-receptor agonists and potent antiseizure medications. We reported that exposure of neonatal macaques to combination of phenobarbital and midazolam (Pb/M) for 24 h, at clinically relevant doses and plasma levels, causes widespread apoptosis affecting neurons and oligodendrocytes. Notably, the extent of injury was markedly more severe compared to shorter (8 h) exposure to these drugs. We also reported that, in the infant macaque, mild hypothermia ameliorates the apoptosis response to the anesthetic sevoflurane. These findings prompted us explore whether mild hypothermia might protect infant nonhuman primates from neuro- and gliotoxicity of Pb/M. Since human infants with seizures may receive combinations of benzodiazepines and barbiturates for days, we opted for 24 h treatment with Pb/M. Neonatal rhesus monkeys received phenobarbital intravenously, followed by midazolam infusion over 24 h under normothermia (T > 36.5 °C-37.5 °C; n = 4) or mild hypothermia (T = 35 °C-36.5 °C; n = 5). Medication doses and blood levels measured were comparable to those in human infants. Animals were euthanized at 36 h and brains examined immunohistochemically and stereologically. Treatment was well tolerated. Extensive degeneration of neurons and oligodendrocytes was seen at 36 h in both groups within neocortex, basal ganglia, hippocampus and brainstem. Mild hypothermia over 36 h (maintained until terminal perfusion) conferred no protection against the neurotoxic and gliotoxic effects of Pb/M. This is in marked contrast to our previous findings that mild hypothermia is protective in the context of a 5 h-long exposure to sevoflurane in infant macaques. These findings demonstrate that brain injury caused by prolonged exposure to Pb/M in the neonatal primate cannot be ameliorated by mild hypothermia.


Assuntos
Lesões Encefálicas , Hipotermia Induzida , Hipotermia , Animais , Encéfalo , Lesões Encefálicas/induzido quimicamente , Lesões Encefálicas/tratamento farmacológico , Lesões Encefálicas/prevenção & controle , Humanos , Lactente , Recém-Nascido , Chumbo/farmacologia , Macaca mulatta , Midazolam/farmacologia , Fenobarbital/toxicidade , Sevoflurano/farmacologia
4.
Toxicol Sci ; 187(2): 298-310, 2022 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-35285501

RESUMO

Perinatal exposure to environmental chemicals is proposed to reprogram development and alter disease susceptibility later in life. Supporting this, neonatal activation of the nuclear receptor constitutive androstane receptor (CAR) (Nr1i3) by TCPOBOP was previously reported to induce persistent expression of mouse hepatic Cyp2 genes into adulthood, and was attributed to long-term epigenetic memory of the early life exposure. Here, we confirm that the same high-dose neonatal TCPOBOP exposure studied previously (3 mg/kg, 15x ED50) does indeed induce prolonged (12 weeks) increases in hepatic Cyp2 expression; however, we show that the persistence of expression can be fully explained by the persistence of residual TCPOBOP in liver tissue. When the long-term presence of TCPOBOP in tissue was eliminated by decreasing the neonatal TCPOBOP dose 22-fold (0.67× ED50), strong neonatal increases in hepatic Cyp2 expression were still obtained but did not persist into adulthood. Furthermore, the neonatal ED50-range TCPOBOP exposure did not sensitize mice to a subsequent, low-dose TCPOBOP treatment. In contrast, neonatal treatment with phenobarbital, a short half-life (t1/2 = 8 h) agonist of CAR and PXR (Nr1i2), induced high-level neonatal activation of Cyp2 genes and also altered their responsiveness to low-dose phenobarbital exposure at adulthood by either increasing (Cyp2b10) or decreasing (Cyp2c55) expression. Thus, neonatal xenobiotic exposure can reprogram hepatic Cyp2 genes and alter their responsiveness to exposures later in life. These findings highlight the need to carefully consider xenobiotic dose, half-life, and persistence in tissue when evaluating the long-term effects of early life environmental chemical exposures.


Assuntos
Receptor Constitutivo de Androstano/metabolismo , Família 2 do Citocromo P450/metabolismo , Xenobióticos , Animais , Feminino , Expressão Gênica , Fígado , Camundongos , Camundongos Endogâmicos C57BL , Fenobarbital/metabolismo , Fenobarbital/toxicidade , Gravidez , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/metabolismo
5.
J Pharmacol Toxicol Methods ; 112: 107107, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34363961

RESUMO

Administration of a compound can induce drug-metabolizing enzymes (DMEs) in the liver. DME induction can affect various parameters in toxicology studies. Therefore, evaluation of DME induction is important for interpreting test compound-induced biological responses. Several methods such as measurement of hepatic microsomal DME activity using substrates, electron microscopy, or immunohistochemistry have been used; however, these methods are limited in throughput and specificity or are not quantitative. Liquid chromatography mass spectrometry (LC/MS)-based protein analysis can detect and quantify multiple proteins simultaneously per assay. Studies have shown that formalin-fixed paraffin-embedded (FFPE) samples, which are routinely collected in toxicology studies, can be used for LC/MS-based protein analysis. To validate the utility of LC/MS using FFPE samples for quantitative evaluation of DME induction, we treated rats with a DME inducer, phenobarbital, and compared the protein expression levels of 13 phase-I and 11 phase-II DMEs between FFPE and fresh frozen hepatic samples using LC/MS. A good correlation between data from FFPE and frozen samples was obtained after analysis. In FFPE and frozen samples, the expression of 6 phase-I and 8 phase-II DMEs showed a similar significant increase and a prominent rise in Cyp2b2 and Cyp3a1 levels. In addition, LC/MS data were consistent with the measurement of microsomal DME activities. These results suggest that LC/MS-based protein expression analysis using FFPE samples is as effective as that using frozen samples for detecting DME induction.


Assuntos
Proteômica , Espectrometria de Massas em Tandem , Animais , Cromatografia Líquida , Enzimas/efeitos dos fármacos , Fígado , Inclusão em Parafina , Fenobarbital/metabolismo , Fenobarbital/toxicidade , Proteômica/métodos , Ratos , Fixação de Tecidos
6.
Crit Rev Toxicol ; 51(5): 373-394, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-34264181

RESUMO

Many nongenotoxic chemicals have been shown to produce liver tumors in mice and/or rats by a mode of action (MOA) involving activation of the constitutive androstane receptor (CAR). Studies with phenobarbital (PB) and other compounds have identified the key events for this MOA: CAR activation; increased hepatocellular proliferation; altered foci formation; and ultimately the development of adenomas/carcinomas. In terms of human relevance, the pivotal species difference is that CAR activators are mitogenic agents in mouse and rat hepatocytes, but they do not stimulate increased hepatocellular proliferation in humans. This conclusion is supported by substantial in vitro studies with cultured rodent and human hepatocytes and also by in vivo studies with chimeric mice with human hepatocytes. Examination of the literature reveals many similarities in the hepatic effects and species differences between activators of rodent CAR and the peroxisome proliferator-activated receptor alpha (PPARα), with PPARα activators also not being mitogenic agents in human hepatocytes. Overall, a critical analysis of the available data demonstrates that the established MOA for rodent liver tumor formation by PB and other CAR activators is qualitatively not plausible for humans. This conclusion is supported by data from several human epidemiology studies.


Assuntos
Neoplasias Hepáticas , Animais , Receptor Constitutivo de Androstano , Hepatócitos , Humanos , Fígado , Camundongos , Fenobarbital/toxicidade , Ratos , Receptores Citoplasmáticos e Nucleares/genética , Roedores
7.
Toxicol Appl Pharmacol ; 415: 115439, 2021 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-33549593

RESUMO

Non-genotoxic carcinogens (NGCs) are known to cause perturbations in DNA methylation, which can be an early event leading to changes in gene expression and the onset of carcinogenicity. Phenobarbital (PB) has been shown to alter liver DNA methylation and hydroxymethylation patterns in mice in a time dependent manner. The goals of this study were to assess if clofibrate (CFB), a well-studied rodent NGC, would produce epigenetic changes in mice similar to PB, and if a methyl donor supplementation (MDS) would modulate epigenetic and gene expression changes induced by phenobarbital. CByB6F1 mice were treated with 0.5% clofibrate or 0.14% phenobarbital for 7 and 28 days. A subgroup of PB treated and control mice were also fed MDS diet. Liquid Chromatography-Ionization Mass Spectrometry (LC-MS) was used to quantify global liver 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels. Gene expression analysis was conducted using Affymetrix microarrays. A decrease in liver 5hmC but not 5mC levels was observed upon treatment with both CFB and PB with varying time of onset. We observed moderate increases in 5hmC levels in PB-treated mice when exposed to MDS diet and lower expression levels of several phenobarbital induced genes involved in cell proliferation, growth, and invasion, suggesting an early modulating effect of methyl donor supplementation. Overall, epigenetic profiling can aid in identifying early mechanism-based biomarkers of non-genotoxic carcinogenicity and increases the quality of cancer risk assessment for candidate drugs. Global DNA methylation assessment by LC-MS is an informative first step toward understanding the risk of carcinogenicity.


Assuntos
Carcinogênese/induzido quimicamente , Carcinógenos/toxicidade , Clofibrato/toxicidade , Metilação de DNA/efeitos dos fármacos , Suplementos Nutricionais , Epigênese Genética/efeitos dos fármacos , Fígado/efeitos dos fármacos , Metionina/administração & dosagem , Fenobarbital/toxicidade , 5-Metilcitosina/análogos & derivados , 5-Metilcitosina/metabolismo , Ração Animal , Fenômenos Fisiológicos da Nutrição Animal , Animais , Carcinogênese/genética , Carcinogênese/metabolismo , Carcinogênese/patologia , Regulação para Baixo , Feminino , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos Transgênicos , Fatores de Tempo , Transcriptoma
8.
J Proteome Res ; 20(1): 950-959, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-33105993

RESUMO

Drug addiction is a chronic relapsing brain disease. Alterations of glucose uptake and metabolism are found in the brain of drug addicts. Insulin mediates brain glucose metabolism and its abnormality could induce brain injury and cognitive impairment. Here, we established a rat model of phenobarbital addiction by 90 days of dose escalation and evaluated addiction-related symptoms. We also performed 18F-fluorodeoxyglucose (FDG) positron emission tomography/computed tomography (PET/CT) to detect glucose uptake in the brain and proteomic analysis of the function of the differentially expressed (DE) proteins via bioinformatics in brain tissues by liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) on days 60 and 90 of phenobarbital or 0.5% carboxymethyl cellulose sodium (CMC-Na) (vehicle) administration. The results showed that phenobarbital-addictive rats developed severe withdrawal symptoms after abstinence and glucose uptake was significantly increased in the brain. Proteomics analysis showed that numerous DE proteins were enriched after phenobarbital administration, among which CALM1, ARAF, and Cbl proteins (related to the insulin signaling pathway) were significantly downregulated on day 60 but not day 90. However, SLC27A3 and NF-κB1 proteins (related to insulin resistance) were significantly upregulated on day 90 (data are available via ProteomeXchange with identifier PXD021101). Our data indicate that the insulin signaling pathway and insulin resistance may play a role in the development of phenobarbital addiction and brain injury, so the findings may have important clinical implications.


Assuntos
Fluordesoxiglucose F18 , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Animais , Encéfalo/diagnóstico por imagem , Cromatografia Líquida , Glucose , Insulina , Fenobarbital/toxicidade , Proteômica , Ratos , Transdução de Sinais , Espectrometria de Massas em Tandem
9.
Toxicol Sci ; 177(2): 362-376, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32735318

RESUMO

Using a chimeric mouse humanized liver model, we provided evidence that human hepatocytes are refractory to the mitogenic effects of rodent constitutive androstane receptor (CAR) activators. To evaluate the functional reliability of this model, the present study examined mitogenic responses to phenobarbital (PB) in chimeric mice transplanted with rat hepatocytes, because rats are responsive to CAR activators. Treatment with 1000 ppm PB for 7 days significantly increased replicative DNA synthesis (RDS) in rat hepatocytes of the chimeric mice, demonstrating that the transplanted hepatocyte model is functionally reliable for cell proliferation analysis. Treatment of humanized CAR and pregnane X receptor (PXR) mice (hCAR/hPXR mice) with 1000 ppm PB for 7 days significantly increased hepatocyte RDS together with increases in several mitogenic genes. Global gene expression analysis was performed with liver samples from this and from previous studies focusing on PB-induced Wnt/ß-catenin signaling and showed that altered genes in hCAR/hPXR mice clustered most closely with liver tumor samples from a diethylnitrosamine/PB initiation/promotion study than with wild-type mice. However, different gene clusters were observed for chimeric mice with human hepatocytes for Wnt/ß-catenin signaling when compared with those of hCAR/hPXR mice, wild-type mice, and liver tumor samples. The results of this study demonstrate clear differences in the effects of PB on hepatocyte RDS and global gene expression between human hepatocytes of chimeric mice and hCAR/hPXR mice, suggesting that the chimeric mouse model is relevant to humans for studies on the hepatic effects of rodent CAR activators whereas the hCAR/hPXR mouse is not.


Assuntos
Fenobarbital , Receptores de Esteroides , Animais , Receptor Constitutivo de Androstano , Hepatócitos , Humanos , Fígado , Camundongos , Fenobarbital/toxicidade , Receptor de Pregnano X , Ratos , Receptores Citoplasmáticos e Nucleares , Reprodutibilidade dos Testes
10.
Toxicology ; 439: 152465, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32320717

RESUMO

In a 79 week bioassay the pesticide synergist piperonyl butoxide (PBO) was shown to significantly increase the incidence of hepatocellular adenoma (but not hepatocellular carcinoma) in male CD-1 mice at dietary levels of 100 and 300 mg/kg/day PBO and in female mice at a dietary level of 300 mg/kg/day. As PBO is not a genotoxic agent, a series of investigative studies were undertaken to elucidate the mode of action (MOA) for PBO-induced mouse liver tumour formation. Male CD-1 mice were fed diets to provide intakes of 0 (control), 30, 100 and 300 mg/kg/day PBO and for purposes of comparison 500 ppm sodium phenobarbital (NaPB), a known constitutive androstane receptor (CAR) activator, for 7 and 14 days. Treatment with 100 and 300 mg/kg/day PBO and 500 ppm NaPB increased relative liver weight which was associated with hepatocyte hypertrophy, with hepatocyte replicative DNA synthesis (RDS) being increased after 7 days treatment. The treatment of CD-1 mice with 30-300 mg/kg/day PBO for 14 days resulted in significant dose-dependent increases in hepatic microsomal cytochrome P450 (CYP) content and 7-pentoxyresorufin O-depentylase (PROD) activity and in hepatic Cyp2b10 mRNA levels. In contrast, PBO produced a biphasic effect on markers of activation of the peroxisome proliferator-activated receptor alpha (PPARα), with small increases in microsomal lauric acid 12-hydroxylase activity and hepatic Cyp4a10 mRNA levels being observed in mice given 100 mg/kg/day with PBO, with either no increase or a significant inhibition being observed in mice given 300 mg/kg/day PBO. The hepatic effects of PBO in male CD-1 mice were generally similar to those produced by NaPB and were reversible after the cessation of treatment for 28 days. Studies were also performed in male C57BL/6J (wild type) mice and in hepatic CAR and pregnane X receptor (PXR) knockout mice (CAR KO/PXR KO mice), where in the CAR KO/PXR KO mice PBO had little effect on markers of CAR activation, but produced some increases in markers of PPARα activation. The treatment of male CD-1 mouse hepatocytes for 4 days with 5-50 µM PBO, 10-1000 µM NaPB and 25 ng/mL epidermal growth factor (EGF) resulted in significant increases in hepatocyte RDS. While treatment of hepatocytes from one male and one female human donor with 5-500 µM PBO and 10-1000 µM NaPB for 4 days had no effect on hepatocyte RDS, treatment with EGF resulted in significant increases in RDS in both human hepatocyte preparations. In summary, PBO is predominantly a hepatic CAR activator at carcinogenic dose levels in CD-1 mice, with activation of hepatic CAR resulting in a suppression of the effect of PBO on hepatic PPARα. A robust MOA for PBO-induced mouse liver tumour formation has been established, this MOA being similar to that previously identified for NaPB and some other rodent liver CAR activators. Based on the lack of effect of PBO on RDS in human hepatocytes, it is considered that the MOA for PBO-induced mouse liver tumour formation is qualitatively not plausible for humans.


Assuntos
Neoplasias Hepáticas Experimentais/induzido quimicamente , Sinergistas de Praguicidas/toxicidade , Butóxido de Piperonila/toxicidade , Animais , Tamanho Celular , Replicação do DNA/efeitos dos fármacos , Dieta , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/efeitos dos fármacos , Hepatócitos/patologia , Humanos , Fígado/efeitos dos fármacos , Fígado/enzimologia , Testes de Função Hepática , Neoplasias Hepáticas Experimentais/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenobarbital/toxicidade , Receptores de Detecção de Cálcio/genética
11.
J Vet Emerg Crit Care (San Antonio) ; 30(2): 221-225, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31975513

RESUMO

OBJECTIVE: To describe the use of hemodialysis in 2 dogs with severe clinical signs from phenobarbital intoxication. SERIES SUMMARY: Two dogs ingested a toxic dose of phenobarbital, leading to severe neurological dysfunction and a comatose state. Both dogs received a 3-hour session of hemodialysis with complete resolution of clinical signs and returned to normal mentation by the end of the therapy. No negative side effects occurred and phenobarbital concentrations returned to therapeutic range during treatment. NEW INFORMATION PROVIDED: This is the first report on the utility and safety of using hemodialysis for phenobarbital intoxication in dogs.


Assuntos
Doenças do Cão/induzido quimicamente , Hipnóticos e Sedativos/toxicidade , Fenobarbital/toxicidade , Diálise Renal/veterinária , Animais , Doenças do Cão/terapia , Cães , Feminino , Hipnóticos e Sedativos/sangue , Masculino , Fenobarbital/sangue
12.
Drug Chem Toxicol ; 43(5): 454-467, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30207178

RESUMO

Garlic (Allium sativum L.), a popular spice, has been used for decades in treating several medical conditions. Although Allicin, an active ingredient of garlic has been extensively studied on carcinogen-induced hepatotoxicity and oxidative stress in rats (Rattus norvegicus), no systematic study on the beneficial effects of generic aged garlic and specific aged garlic extract-Kyolic has been done. The present study involves rats fed chronically with two liver carcinogens, p-dimethylaminoazobenzene and phenobarbital, to produce hepatotoxicity. The aged garlic extract was characterized by UV-spectra, FTIR, HPLC and GC-MS. Biochemical and pathophysiological tests were performed by keeping suitable controls at four fixation intervals, namely, 30, 60, 90, and 120 days, utilizing several widely accepted toxicity biomarkers. Compared to the controls, remarkable elevation in the activities of lactate dehydrogenase, gamma glutamyl transferase and decline in catalase and glucose-6-phosphate dehydrogenase were observed in the carcinogen fed rats. Daily administration of aged garlic extract, could favorably modulate the elevated levels of various toxicity biomarkers including serum triglyceride, creatinine, urea, bilirubin, blood urea nitrogen except total cholesterol. It also altered the levels of blood glucose, HDL-cholesterol, albumin, AST, ALT, and hemoglobin contents in carcinogen intoxicated rats, indicating its protective potential against hepatotoxicity and oxidative stress in the experimental rats. Down-regulation of Bcl-2 and p53 proteins caused cell cycle arrest and apoptosis in garlic fed group. Kyolic exhibited additional benefits by arresting cell viability of cancer cells. This study would thus validate the use of aged garlic extract in the treatment of diseases causing liver toxicity including hepatocarcinoma.


Assuntos
Carcinogênese/efeitos dos fármacos , Carcinógenos/toxicidade , Doença Hepática Induzida por Substâncias e Drogas/prevenção & controle , Alho/química , Fígado/efeitos dos fármacos , Fenobarbital/toxicidade , Extratos Vegetais/farmacologia , p-Dimetilaminoazobenzeno/toxicidade , Animais , Biomarcadores/sangue , Biomarcadores/metabolismo , Glicemia/análise , Glicemia/metabolismo , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/prevenção & controle , Catalase/sangue , Catalase/metabolismo , Doença Hepática Induzida por Substâncias e Drogas/sangue , Doença Hepática Induzida por Substâncias e Drogas/metabolismo , Feminino , Fígado/metabolismo , Fígado/patologia , Neoplasias Hepáticas/induzido quimicamente , Neoplasias Hepáticas/prevenção & controle , Masculino , Estresse Oxidativo/efeitos dos fármacos , Extratos Vegetais/uso terapêutico , Ratos , Ratos Wistar
13.
J Toxicol Sci ; 44(7): 459-469, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31270302

RESUMO

Phenobarbital (PB) and Di (2-ethylhexyl) phthalate (DEHP), an anti-epileptic drug and a plasticizer used in flexible polyvinylchloride formulations, respectively, are well-known typical hepatotoxicants. This study investigated the effects of PB (100 mg/kg/day) or DEHP (500 mg/kg/day) on the endocrine system in intact juvenile/peripubertal male rats exposed for 31 days beginning on postnatal day 23. Slight hormone level changes, histopathological changes in thyroid gland or induction of UDP-glucuronosyltransferase in liver were observed in both the PB and DEHP groups. One of the assumed mechanisms inducing thyroid effects is predictable to be secondary changes based on the enhancement in thyroid hormone metabolism via the induction of hepatic microsomal enzymes. No reproductive system-related changes in organ weights, histopathology, and sexual maturation were observed in both groups. Lower testosterone level was observed in the PB group. CYP2B and CYP3A, which are involved in testosterone metabolism, were induced in liver of the PB group. There was no change of 17ß-hydroxysteroid dehydrogenase activity in testis of both groups. Lower testosterone level in the PB-treated male rats was attributed to an indirect, hepatotoxicity-associated effect on the reproductive system and not to direct effects on testis such as the antiandrogenic activity and the inhibition of steroidogenesis. These results did not indicate that PB or DEHP exposure affects the endocrine system directly.


Assuntos
Anticonvulsivantes/toxicidade , Dietilexilftalato/toxicidade , Sistema Endócrino/efeitos dos fármacos , Sistema Endócrino/patologia , Fenobarbital/toxicidade , Plastificantes/toxicidade , Animais , Animais Recém-Nascidos , Anticonvulsivantes/administração & dosagem , Sistema Enzimático do Citocromo P-450/metabolismo , Glucuronosiltransferase/metabolismo , Fígado/enzimologia , Masculino , Fenobarbital/administração & dosagem , Ratos Sprague-Dawley , Testosterona/metabolismo , Glândula Tireoide/diagnóstico por imagem , Glândula Tireoide/patologia , Fatores de Tempo
14.
PLoS One ; 14(5): e0217009, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31141523

RESUMO

Researchers investigating cancer chemotherapy and management continue to search for agents that selectively kill malignant cells and leave healthy neighboring cells intact. Natural products provide relevant resources for anti-cancer drug discovery. However, the physicochemical properties of these compounds limit their efficient uptake and bioavailability. We introduced a nanocarrier system, namely, zinc-aluminum-layered double hydroxide (ZnAl-LDH) intercalated with protocatechuic acid. In this study, the efficacy and toxicity of protocatechuic acid intercalated in zinc aluminum-layered double hydroxide nanoparticles (PCA-ZnAl) against diethylnitrosamine/phenobarbital (DEN/PB)-induced hepatocellular carcinoma (HCC) in BALB/c mice was evaluated. HCC in male mice was induced by a single-dose intraperitoneal administration of DEN and was promoted by the introduction of PB via drinking water for 12 weeks. HCC induction was confirmed after the DEN/PB introduction period by measurement of the elevated level of serum α-feto protein (AFP). The results showed that the level of α-fetoprotein was significantly reduced in PCA-ZnAl (350±43.90 ng/mL), doxorubicin (DOX) (290±20.52 ng/mL) and ZnAl-LDH (390±19.65 ng/mL) treated animals compared to HCC mice treated with normal saline (580.4± 52.04 ng/mL). Superoxide dismutase (SOD), catalase (CAT), and glutathione (GSH) levels were significantly increased, whereas the level of lipid peroxidation was significantly decreased in HCC mice treated with DOX, PCA-ZnAl and ZnAl-LDH compared with those in HCC mice treated with saline. Restoration of hepatocyte morphology was observed following treatment that was comparable to that in the normal control group. Deterioration of hepatic cells and a significant increase of aspartate transaminase (AST), alanine transaminase (ALT), and alkaline phosphatase (ALP) were observed in the cancer-induced untreated group compared with that in the groups treated with nanoparticles. The histopathological features of the liver obtained from PCA-ZnAl-treated mice showed a uniform size with a similar distribution of the nuclear-cytoplasmic ratio and nucleus centrally located in the cytoplasm, similar to the normal liver cells. The results underscored the potential of PCA-ZnAl for the treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Hidroxibenzoatos/farmacologia , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Animais , Carcinoma Hepatocelular/induzido quimicamente , Carcinoma Hepatocelular/patologia , Proliferação de Células/efeitos dos fármacos , Dietilnitrosamina/toxicidade , Modelos Animais de Doenças , Humanos , Hidróxidos/farmacologia , Neoplasias Hepáticas Experimentais/induzido quimicamente , Neoplasias Hepáticas Experimentais/patologia , Camundongos , Nanopartículas/química , Fenobarbital/toxicidade
15.
Neurotox Res ; 35(1): 173-182, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30141144

RESUMO

The developing brain is uniquely susceptible to drug-induced increases in programmed cell death or apoptosis. Many compounds, including anticonvulsant drugs, anesthetic agents, and ethanol, when administered in a narrow postnatal window in rodents, result in increased pruning of neurons. Here, we report that dimethyl sulfoxide (DMSO) triggers widespread neurodegeneration in the immature (postnatal day, P7) rat brain, an effect consistent with a prior report in neonatal mice. We found that the synthetic cannabinoid receptor agonist WIN 55,212-2 (WIN) exerts a neuroprotective effect against DMSO-induced cell death. We extended these findings to determine if WIN is neuroprotective against another drug class known to increase developmental cell death, namely antiseizure drugs. The antiseizure drug phenobarbital (PB) remains the primary treatment for neonatal seizures, despite significantly increasing cell death in the developing rodent brain. WIN exerts antiseizure effects in immature rodent seizure models, but increases the toxicity associated with neonatal ethanol exposure. We thus sought to determine if WIN would protect against or exacerbate PB-induced cell death. Unlike either the prior report with ethanol or our present findings with DMSO, WIN was largely without effect on PB-induced cell death. WIN alone did not increase cell death over levels observed in vehicle-treated rats. These data suggest that WIN has a favorable safety profile in the developing brain and could potentially serve as an adjunct therapy with phenobarbital (albeit one that does not attenuate PB-induced toxicity).


Assuntos
Anticonvulsivantes/farmacologia , Anticonvulsivantes/toxicidade , Benzoxazinas/farmacologia , Dimetil Sulfóxido/toxicidade , Morfolinas/farmacologia , Naftalenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Fenobarbital/toxicidade , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/crescimento & desenvolvimento , Encéfalo/patologia , Agonistas de Receptores de Canabinoides/farmacologia , Morte Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Masculino , Síndromes Neurotóxicas/tratamento farmacológico , Síndromes Neurotóxicas/patologia , Distribuição Aleatória , Ratos Sprague-Dawley
16.
Environ Mol Mutagen ; 60(1): 42-46, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30338550

RESUMO

The Pig-a assay is an emerging and promising in vivo method to determine mutagenic potential of chemicals. Since its development in 2008, remarkable progress has been made in harmonizing and characterizing the test procedures, primarily using known mutagenic chemicals. The purpose of the present study was to evaluate specificity of the Pig-a assay using two nongenotoxic and well-characterized rodent liver carcinogens, phenobarbital and clofibrate, in male F344/DuCrl rats. Daily oral administration of phenobarbital or clofibrate at established hepatotoxic doses for 28 days resulted in substantial hepatic alterations, however, did not increase the frequency of Pig-a mutation markers (RETCD59- and RBCCD59- ) compared to vehicle control or pre-exposure (Day -5) mutant frequencies. These results are consistent with the existing literature on the nonmutagenic mode of action (MoA) of phenobarbital and clofibrate liver tumors. The present study contributes to the limited, but expanding evidence on the specificity of the Pig-a assay and further for the investigations of carcinogenic MoAs, i.e., mutagenic or nonmutagenic potential of chemicals. Environ. Mol. Mutagen. 60:42-46, 2019. © 2018 Wiley Periodicals, Inc.


Assuntos
Carcinógenos/toxicidade , Clofibrato/toxicidade , Glicosilfosfatidilinositóis/genética , Neoplasias Hepáticas/induzido quimicamente , Testes de Mutagenicidade/métodos , Fenobarbital/toxicidade , Animais , Bioensaio , Fígado/efeitos dos fármacos , Neoplasias Hepáticas/patologia , Masculino , Mutação/efeitos dos fármacos , Projetos Piloto , Ratos , Ratos Endogâmicos F344 , Sensibilidade e Especificidade
17.
Toxicol Sci ; 167(1): 172-189, 2019 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-30203046

RESUMO

Exposure to environmentally relevant chemicals that activate the xenobiotic receptors aryl hydrocarbon receptor (AhR), constitutive androstane receptor (CAR), and peroxisome proliferator-activated receptor alpha (PPARα) in rodent test systems often leads to increases in oxidative stress (OS) that contributes to liver cancer induction. We hypothesized that activation of the oxidant-induced transcription factor Nrf2 could be used as a surrogate endpoint for increases in OS. We examined the relationships between activation of xenobiotic receptors and Nrf2 using previously characterized gene expression biomarkers that accurately predict modulation. Using a correlation approach (Running Fisher Test), the biomarkers were compared with microarray profiles in a mouse liver gene expression compendium. Out of the 163 chemicals examined, 47% from 53 studies activated Nrf2. We found consistent coupling between CAR and Nrf2 activation. Out of the 41 chemicals from 32 studies that activated CAR, 90% also activated Nrf2. CAR was activated earlier and at lower doses than Nrf2, indicating CAR activation preceded Nrf2 activation. Nrf2 activation by 2 CAR activators was abolished in CAR-null mice. We hypothesized that Nrf2 is activated by reactive oxygen species from the increased activity of enzymes encoded by Cyp2b family members. However, Nrf2 was similarly activated in the livers of both TCPOBOP-treated wild-type and Cyp2b9/10/13-null mice. This study provides evidence that Nrf2 activation (1) often occurs after exposure to xenobiotic chemicals, (2) is tightly linked to activation of CAR, and (3) does not require induction of 3 Cyp2b genes secondary to CAR activation.


Assuntos
Microssomos Hepáticos/efeitos dos fármacos , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fenobarbital/toxicidade , Receptores Citoplasmáticos e Nucleares/metabolismo , Xenobióticos/toxicidade , Animais , Hidrocarboneto de Aril Hidroxilases/genética , Hidrocarboneto de Aril Hidroxilases/metabolismo , Biomarcadores/metabolismo , Receptor Constitutivo de Androstano , Família 2 do Citocromo P450/genética , Família 2 do Citocromo P450/metabolismo , Indução Enzimática , Expressão Gênica/efeitos dos fármacos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microssomos Hepáticos/metabolismo , Fator 2 Relacionado a NF-E2/genética , PPAR alfa/genética , PPAR alfa/metabolismo , Fenobarbital/metabolismo , Receptores Citoplasmáticos e Nucleares/genética , Esteroide Hidroxilases/genética , Esteroide Hidroxilases/metabolismo , Xenobióticos/metabolismo
18.
Rocz Panstw Zakl Hig ; 69(3): 307-314, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30141584

RESUMO

Background: The changes in DNA methylation are considered as one of the early events in hepatocarcinogenesis. Objective: We evaluated the ability of phenobarbital (PB) ­ the most widely used anticonvulsant worldwide and classical rodent liver carcinogen ­ to cause the promoter region of the c-myc protooncogene hypomethylation as well as changes of mRNA level of this gene. Moreover, the expression of Dnmt1 protein in rat treated with this compound was analyzed. Material and Methods: Male Wistar rats received PB in daily oral doses of 92.8 mg kg-1 b.w. day-1 (at 24-h intervals; for one, three and fourteen days). Methylation of the c-myc promoter region was measured by PCR-based methylationsensitive restriction enzyme analysis (MSRA). Levels of mRNA for c-myc and protein Dnmt1 were assayed using Real-Time PCR and Western Blot, respectively. Results: The study showed that phenobarbital stimulated persistent changes in DNA methylation, i.e. loss of methylation in the promoter region of the c-myc gene and up-regulated its mRNA level. In addition, a significant increase in protein level of Dnmt1 in the c-myc over-expressing liver cells was observed. Conclusion: The oppose relationship between Dnmt1 activity and methylation status of c-myc gene was demonstrated. The c-myc over-expression by demethylation might represent an important, early events in the mechanism of action (MOA) of phenobarbital.


Assuntos
Metilação de DNA , Fígado/efeitos dos fármacos , Fenobarbital/toxicidade , Regiões Promotoras Genéticas/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-myc/metabolismo , Animais , Relação Dose-Resposta a Droga , Masculino , Ratos , Ratos Wistar
19.
Hum Mol Genet ; 27(21): 3688-3696, 2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30085095

RESUMO

A first-in-human gene therapy trial using a recombinant adeno-associated viral (rAAV) vector for acute intermittent porphyria (AIP) reveals that higher doses would be required to reach therapeutic levels of the porphobilinogen deaminase (PBGD) transgene. We developed a hyperfunctional PBGD protein to improve the therapeutic index without increasing vector dose. A consensus protein sequence from 12 mammal species was compared to the human PBGD sequence, and eight amino acids were selected. I291M and N340S variants showed the highest increase in enzymatic activity when expressed in prokaryotic and eukaryotic systems. In silico analysis indicates that isoleucine 291 to methionine and asparagine 340 to serine variants did not affect the active site of the enzyme. In vitro analysis indicated a synergistic interaction between these two substitutions that improve kinetic stability. Finally, full protection against a phenobarbital-induced attack was achieved in AIP mice after the administration of 1 × 1011 gc/kg of rAAV2/8-PBGD-I291M/N340S vector; three times lower than the dose required to achieve full protection with the control rAAV2/8-hPBGD vector. In conclusion, we have developed and characterized a hyperfunctional PBGD protein. The inclusion of this variant sequence in a rAAV2/8 vector allows the effective dose to be lowered in AIP mice.


Assuntos
Terapia Genética , Hidroximetilbilano Sintase/metabolismo , Hidroximetilbilano Sintase/uso terapêutico , Porfiria Aguda Intermitente/terapia , Animais , Simulação por Computador , Modelos Animais de Doenças , Hidroximetilbilano Sintase/farmacologia , Cinética , Masculino , Mamíferos/metabolismo , Camundongos , Fenobarbital/toxicidade , Conformação Proteica , Análise de Sequência de Proteína , Índice Terapêutico
20.
J Appl Toxicol ; 38(12): 1529-1537, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30047161

RESUMO

Transcriptomics technologies have been used for risk assessment of chemicals, mainly to predict the modes of action (MOAs) of chemicals or identify biomarkers. Transcriptomics data may also be helpful to understand MOAs of chemicals at the molecular level in more detail. As an example of the known MOAs, there are two MOAs of thyroid toxicity: inhibition of thyroid hormone synthesis ("direct" effect) and hypermetabolism of thyroid hormone by enzyme induction in liver ("indirect" effect). In the present study, global profiles of gene expression were analyzed in rats treated with chemicals acting directly on the thyroid (thyroid peroxidase inhibitors such as propylthiouracil and methimazole) and chemicals acting indirectly on the thyroid (hepatic enzyme inducers such as phenobarbital and pregnenolone-16α-carbonitrile) using microarrays. Using a subtraction method between these two types of chemicals, we identified characteristic gene expression changes on the thyroid hormone synthesis pathway by direct-acting chemicals. Based on the functions of these genes, alterations of their expression seem to indicate the results of thyroid peroxidase inhibition, and might be helpful in more accurate evaluation of MOAs for thyroid toxicity.


Assuntos
Antitireóideos/toxicidade , Fígado/efeitos dos fármacos , Glândula Tireoide/efeitos dos fármacos , Hormônios Tireóideos/biossíntese , Transcriptoma/efeitos dos fármacos , Animais , Indução Enzimática/efeitos dos fármacos , Perfilação da Expressão Gênica , Iodeto Peroxidase/antagonistas & inibidores , Fígado/enzimologia , Masculino , Metimazol/toxicidade , Análise em Microsséries , Fenobarbital/toxicidade , Propiltiouracila/toxicidade , Ratos Wistar , Glândula Tireoide/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...